Abstract

As an intriguing topological phase, higher-order topological insulators have attracted tremendous attention, but the candidate materials are limited in artificial and inorganic systems. In this work, we propose a universal approach to search for two-dimensional (2D) second-order topological insulators (SOTIs) in covalent organic frameworks (COFs) with C3 symmetric cores. The underlying mechanism is illustrated through tight-binding calculations in a star lattice, showing the 2D SOTI in an overlooked energy window between two Kagome-bands with four types of nontrivial band structures. The emergence of the unique topological edge and corner states can be understood from the Su-Schrieffer-Heeger model. Furthermore, using the frontier orbital of the monomer building block as an indicator, the 2D SOTI is directly confirmed in three realistic COFs by first-principles calculations. Our results not only extend the concept of organic topological insulators from first-order to second-order but also demonstrate the universal existence of intrinsic higher-order topology in 2D COFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call