Abstract

Intrinsic random functions (IRF) provide a versatile approach when the assumption of second-order stationarity is not met. Here, we develop the IRF theory on the circle with its universal kriging application. Unlike IRF in Euclidean spaces, where differential operations are used to achieve stationarity, our result shows that low-frequency truncation of the Fourier series representation of the IRF is required for such processes on the circle. All of these features and developments are presented through the theory of reproducing kernel Hilbert space. In addition, the connection between kriging and splines is also established, demonstrating their equivalence on the circle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.