Abstract

The efficiency with which the surroundings of trivalent lanthanide ions sensitize their luminescence (eta(sens)) is a key parameter in the design of highly emitting molecular edifices and materials. Evaluation of eta(sens) requires the measurement of the overall and intrinsic quantum yields obtained upon ligand and metal excitation, respectively. We describe a modified integration sphere enabling absolute determination of these quantities on small amounts of solid samples or solutions (60 muL). The sphere is tested for linear response of emitted versus absorbed light intensities with increasing concentration of Cs(3)[Ln(dpa)(3)] solutions (Ln = Eu, Tb). The overall (Q = 29 +/- 2%) and intrinsic (Q = 41 +/- 2%) quantum yields obtained for Eu allow the direct calculation of eta(sens) (71 +/- 6%) while the radiative lifetime (tau(rad) = 4.1 +/- 0.3 ms) is calculated from Q and the observed lifetime. The intrinsic quantum yield matches the value extracted from emission parameters using the simplified equation proposed by Werts et al. but, on the other hand, the theoretical estimate using spontaneous transition probabilities calculated from Judd-Ofelt (JO) parameters is off by -25% (3.15 ms). In the case of Cs(3)[Tb(dpa)(3)], the molar absorption coefficient of the (5)D(4)<--(7)F(6) transition is too small to measure Q for the solution but this quantity could be determined for the microcrystalline sample (72 +/- 5%, tau(rad) = 1.9 +/- 0.1 ms). In this case, the JO theoretical estimate leads to a much too short tau(rad) value. The large difference in eta(sens) for microcrystalline samples of Eu (85%) and Tb (42%) tris(dipicolinates) is attributed to back energy transfer in the latter compound consecutive to a sizeable overlap between the (5)D(4)-->(7)F(6) emission and the absorption spectrum of the dipicolinate triplet, this overlap being smaller in the case of the solution. The overall quantum yield of Na(3)[Yb(dpa)(3)] in aqueous solution is very low (0.015 +/- 0.002%) due to both poor sensitization efficiency (8%) and small intrinsic quantum yield (Q = 0.178 +/- 0.003%; tau(rad) = 1.31 +/- 0.02 ms). For evaluating intrinsic quantum yields of Yb in aqueous solutions of coordination compounds from lifetimes, a value of 1.2-1.3 ms is recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.