Abstract

Recent work suggests that activity-induced alkaline transients within the interstitial space of nervous tissue are largely due to net fluxes of acid-base equivalents across postsynaptic receptor-gated ion channels. In view of the marked pH sensitivity of certain receptor channels, it has been frequently postulated that synaptically-evoked H+ shifts might play a neuromodulatory role. We provide here the first evidence to support the above hypothesis in showing that extracellularly recorded glutamatergic responses in area CA1 of rat hippocampal slices are potentiated upon inhibition of fast extracellular H+ buffering by a poorly-permeant carbonic anhydrase inhibitor, benzolamide (10 microM). Experiments with glutamate receptor antagonists and Mg(2+)-free solutions suggest that the action of benzolamide is mediated by the H+ sensitivity of N-methyl-D-aspartate (NMDA) receptor channels. In further agreement with an intrinsic neuromodulatory role for H+ in excitatory transmission, addition of the H+ buffer HEPES (20 mM) produced a selective attenuation of pharmacologically-isolated NMDA receptor-mediated responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.