Abstract

In this work, a promising device for direct optical envelope mixing, the Intrinsic Photomixing Detector (IPD) based on hydrogenated amorphous silicon, is reported. The IPD directly generates a photocurrent proportional to the nonlinear mixing of two optical modulation envelope functions. Experiments illustrate efficient mixing in the visible range at low light levels down to ϕ1 = 4.36 mW/cm2 (444 nm) and ϕ2 = 1.03 mW/cm2 (636 nm). Modulation frequencies exceeding the MHz range are demonstrated. Electro-optical simulations identify defect-induced electrical field screening within the absorber to cause the nonlinear mixing process, opening-up the opportunity to tailor devices toward application-specific requirements. The IPD functionality paves the way toward very simple but high-performance photodetectors for 3D imaging and ranging for direct optical convolutional sensors or for efficient optical logic gates. Using amorphous silicon provides a photodetector material base, which can easily be integrated on top of silicon electronics, enabling fill factors of up to 100%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.