Abstract

The pathophysiology of saccular aneurysms is complex and multifactorial. The aim of the present study was to understand the mechanism of apoptosis in an elastase-induced aneurysm model in rabbits. Elastase-induced saccular aneurysms were created at the origin of the right common carotid artery in 20 rabbits. Aneurysm samples were harvested at 2 and 12 weeks after creation. Expression of apoptosis-associated proteins, including caspases and bcl-2 proteins, were assessed by Western blot analysis (n = 5 at both time points). Terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) staining, which indicates the presence of apoptosis, was performed in tissue sections (n = 5 at both time points). The unoperated contralateral common carotid artery was used as a control. Expression of active caspase-3, the final executioner of apoptosis, and caspase-9, the mediator of the intrinsic mitochondrial pathway, was observed in aneurysms at 2 weeks, whereas the expression of activated caspase-8, the mediator of the extrinsic death receptor pathway, was absent at both time points. Expression of antiapoptotic proteins, Bcl-2 and phospho-Bad, was down-regulated in aneurysms compared with controls at 2 weeks. None of these proteins were differentially expressed at 12 weeks. These results were confirmed by the presence of TUNEL-positive cells in some aneurysms at the early time point. In this study of elastase-induced aneurysms in a rabbit model, activation of apoptosis is mediated predominantly by the Bcl-2-mediated intrinsic pathway through the activation of caspase-9.

Highlights

  • ObjectivesThe aim of the present study was to understand the mechanism of apoptosis in an elastase-induced aneurysm model in rabbits

  • AND OBJECTIVES: The pathophysiology of saccular aneurysms is complex and multifactorial

  • None of these proteins were differentially expressed at 12 weeks. These results were confirmed by the presence of Terminal deoxynucleotidyltransferase– mediated dUTP nick end-labeling (TUNEL)-positive cells in some aneurysms at the early time point

Read more

Summary

Objectives

The aim of the present study was to understand the mechanism of apoptosis in an elastase-induced aneurysm model in rabbits.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.