Abstract
The pathophysiology of saccular aneurysms is complex and multifactorial. The aim of the present study was to understand the mechanism of apoptosis in an elastase-induced aneurysm model in rabbits. Elastase-induced saccular aneurysms were created at the origin of the right common carotid artery in 20 rabbits. Aneurysm samples were harvested at 2 and 12 weeks after creation. Expression of apoptosis-associated proteins, including caspases and bcl-2 proteins, were assessed by Western blot analysis (n = 5 at both time points). Terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) staining, which indicates the presence of apoptosis, was performed in tissue sections (n = 5 at both time points). The unoperated contralateral common carotid artery was used as a control. Expression of active caspase-3, the final executioner of apoptosis, and caspase-9, the mediator of the intrinsic mitochondrial pathway, was observed in aneurysms at 2 weeks, whereas the expression of activated caspase-8, the mediator of the extrinsic death receptor pathway, was absent at both time points. Expression of antiapoptotic proteins, Bcl-2 and phospho-Bad, was down-regulated in aneurysms compared with controls at 2 weeks. None of these proteins were differentially expressed at 12 weeks. These results were confirmed by the presence of TUNEL-positive cells in some aneurysms at the early time point. In this study of elastase-induced aneurysms in a rabbit model, activation of apoptosis is mediated predominantly by the Bcl-2-mediated intrinsic pathway through the activation of caspase-9.
Highlights
ObjectivesThe aim of the present study was to understand the mechanism of apoptosis in an elastase-induced aneurysm model in rabbits
AND OBJECTIVES: The pathophysiology of saccular aneurysms is complex and multifactorial
None of these proteins were differentially expressed at 12 weeks. These results were confirmed by the presence of Terminal deoxynucleotidyltransferase– mediated dUTP nick end-labeling (TUNEL)-positive cells in some aneurysms at the early time point
Summary
The aim of the present study was to understand the mechanism of apoptosis in an elastase-induced aneurysm model in rabbits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.