Abstract

Density functional theory (DFT) and DFT corrected for on-site Coulomb interactions (DFT+U) calculations are presented on aluminum doping in bulk TiO2 and the anatase (101) surface. Particular attention is paid to the mobility of oxygen vacancies throughout the doped TiO2 lattice, as a means by which charge compensation of trivalent dopants can occur. The effect that Al doping of TiO2 electrodes has in dye-sensitized solar cells is explained as a result of this mobility and charge compensation. Substitutional defects in which one Al3+ replaces one Ti4+ are found to introduce valence band holes, while intrinsic oxygen vacancies are found to introduce states in the band gap. Coupling two of these substitutional defects with an oxygen vacancy results in exothermic defect formation which maintain charge neutrality. Nudged elastic band calculations have been performed to investigate the formation of these clustered defects in the (101) surface by oxygen vacancy diffusion, with the resulting potential energy sur...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call