Abstract

Therapeutic selectivity is one of the most important considerations in cancer chemotherapy. The design of therapeutic strategies to preferentially kill malignant cells while minimizing harmful effects to normal cells depends on our understanding of the biological differences between cancer and normal cells. We have previously demonstrated that certain agents generating reactive oxygen species (ROS) such as 2-methoxyestradiol (2-ME) preferentially kill human leukemia cells without exhibiting significant cytotoxicity in normal lymphocytes. The purpose of the current study was to investigate the biochemical basis for such selective anticancer activity. Flow cytometric analyses were utilized to measure intracellular O(2)(-) levels and apoptosis. MTT assays were used as indicators of cellular viability. Western blot analysis was used to measure the expression of antioxidant enzymes in cancer and normal cells. Malignant cells in general are more active than normal cells in the production of O(2)(-), are under intrinsic oxidative stress, and thus are more vulnerable to damage by ROS-generating agents. The intrinsic oxidative stress in cancer cells was associated with the upregulation of SOD and catalase protein expression, likely as a mechanism to tolerate increased ROS stress. The increase in SOD and catalase expression was observed both in primary human leukemia cells and in primary ovarian cancer cells. Both malignant cell types were more sensitive to 2-ME than their normal counterparts, as demonstrated by the significant accumulation of O(2)(-) and subsequent apoptosis. The administration of ROS scavengers in combination with 2-ME prevented the accumulation of O(2)(-) and abrogated apoptosis induction. O(2)(-) is an important mediator of 2-ME-induced apoptosis. The increased oxidative stress in cancer cells forces these cells to rely more on antioxidant enzymes such as SOD for O(2)(-) elimination, thus making the malignant cells more vulnerable to SOD inhibition than normal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.