Abstract

We investigate the orbital angular momentum (OAM) of paraxial beams containing off-axis phase dislocations and put forward a simple method to calculate the intrinsic orbital angular momentum of an arbitrary paraxial beam. Using this approach we find that the intrinsic OAM of a fundamental Gaussian beam with a vortex imprinted off axis has a Gaussian dependence on the vortex displacement, implying that the expectation value of the intrinsic OAM of a photon can take on a continuous range of values (i.e., integer and noninteger values in units of h). Finally, we investigate, both numerically and experimentally, the far-field profiles of beams carrying half-integer OAM per photon, these beams having been created by the method of imprinting off-axis vortices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call