Abstract

In this paper we investigate the intrinsic optical bistability (IOB) in a ferroelectric (FE) single layer using an alternative analysis. The FE material is considered to have an intensity-dependent refractive index where the third order nonlinear susceptibility χ(3) acts like Kerr coefficient. The nonlinear response of the FE medium is modeled using the Landau-Khalatnikov (LK) dynamical equation with the nonlinear anharmonic potential obtained from the Landau-Devonshire free energy expressed in terms of polarization. Within a single frequency approximation, the electromagnetic wave equation is written in terms of the polarization P rather than the electric field E as the dependent variable. With the application of the nonlinear boundary conditions we have derived expressions for both reflectance and transmittance as a function of the electric field incident amplitude, polarization and other material parameters. The formalism proves to be more suitable for FE materials since most of these materials have highly linear and nonlinear coefficients especially when the operating frequency is in the resonance region. The effects of thickness, operating frequency and temperature on BaTiO3 single film are investigated theoretically. The results presented here agree in principle with the recent experimental observations of intrinsic OB in BaTiO3 monocrystal and other FE photorefractive materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.