Abstract

Sodium-metal batteries have strong potential to be utilized as stationary high energy density storage devices. Owing to its high ionic conductivity, low electronic conductivity and relatively easy fabrication, NASICON-structure electrolyte (Na3Zr2Si2PO12) is one of the potential candidates to be considered in the solid-state sodium-metal batteries at room temperature. However, the large interfacial resistance between the solid-state electrolyte and the metallic sodium is known to limit the critical current density (CCD) of the cell. In this study, a simple and cost-effective annealing process is introduced to the electrolyte preparation to improves its interface with metallic sodium. X-ray photoelectron spectroscopy and scanning probe microscopy show that Si forms bonds with the surface functional groups when exposed to the ambient condition. With the removal of surface contamination as well as a partially reduced electrolyte surface, the annealed electrolyte shows an extremely small interfacial resistance of 11 Ω cm2 and a high CCD of 0.9 mA cm−2. This study provides an insight on the electrolyte surface preparation and its significant in a sodium-metal solid-state battery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.