Abstract
Intrinsic localized modes (ILMs) are investigated in an N-pendulum array subjected to vertical harmonic excitation. The pendula behave nonlinearly and are coupled with each other because they are connected by torsional, weak, linear springs. In the theoretical analysis, van der Pol's method is employed to determine the expressions for frequency response curves for the principal parametric resonance, considering the nonlinear restoring moment of the pendula. In the numerical results, frequency response curves for N = 2 and 3 are shown to examine the patterns of ILMs, and demonstrate the influences of the connecting spring constants and the imperfections of the pendula. Bifurcation sets are also calculated to show the excitation frequency range and the conditions for the occurrence of ILMs. Increasing the connecting spring constants results in the appearance of Hopf bifurcations. The numerical simulations reveal the occurrence of ILMs with amplitude modulated motions (AMMs), including chaotic motions. ILMs were observed in experiments, and the experimental data were compared with the theoretical results. The validity of the theoretical analysis was confirmed by the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.