Abstract

A coherent, intrinsic, basis-set-independent analysis is developed for the invariants of the first-order density matrix of an accurate molecular electronic wavefunction. From the hierarchical ordering of the natural orbitals, the zeroth-order orbital space is deduced, which generates the zeroth-order wavefunction, typically an MCSCF function in the full valence space. It is shown that intrinsically embedded in such wavefunctions are elements that are local in bond regions and elements that are local in atomic regions. Basis-set-independent methods are given that extract and exhibit the intrinsic bond orbitals and the intrinsic minimal-basis quasi-atomic orbitals in terms of which the wavefunction can be exactly constructed. The quasi-atomic orbitals are furthermore oriented by a basis-set independent method (viz. maximization of the sum of the fourth powers of all off-diagonal density matrix elements) so as to exhibit clearly the chemical interactions. The unbiased nature of the method allows for the adaptation of the localized and directed orbitals to changing geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call