Abstract

Asymmetric reflection in Bragg gratings and asymmetric diffraction in diffraction gratings are both linked to parity-time (PT) symmetry in non-Hermitian optics, but their direct relation has not been examined. To fill this gap, we first consider a PT-symmetric sinusoidal grating to compare the contrast of forward and backward reflectivities and the ratio of ±1-order diffraction efficiencies. Analytical and numerical results show that they change with identical tendencies and peaks at same positions in a wide parameter space, indicating thus an intrinsic link in both PT symmetric and PT broken phases. The underlying physics is found to be that the unbalanced coupling strengths between forward and backward reflected waves are identical to those between 0-order and ±1-order diffracted waves. We then consider a non-Hermitian grating dynamically induced in cold atomic lattices to include higher-order diffractions and corresponding reflections.Full numerical calculations show that the aforementioned findings hold also true in this complicated but practical grating, even in more general non-Hermitian cases beyond the exact PT symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.