Abstract

We report a comprehensive study of the two-phonon intervalley (2D) Raman mode in graphene monolayers, motivated by recent reports of asymmetric 2D-mode line shapes in freestanding graphene. For photon energies in the range 1.53-2.71 eV, the 2D-mode Raman response of freestanding samples appears as bimodal, in stark contrast with the Lorentzian approximation that is commonly used for supported monolayers. The transition between the freestanding and supported cases is mimicked by electrostatically doping freestanding graphene at carrier densities above 2 × 10(11) cm(-2). This result quantitatively demonstrates that low levels of charging can obscure the intrinsically bimodal 2D-mode line shape of monolayer graphene. In pristine freestanding graphene, we observe a broadening of the 2D-mode feature with decreasing photon energy that cannot be rationalized using a simple one-dimensional model based on resonant inner and outer processes. This indicates that phonon wavevectors away from the high-symmetry lines of the Brillouin zone must contribute to the 2D-mode, so that a full two-dimensional calculation is required to properly describe multiphonon-resonant Raman processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call