Abstract

X-ray microcalorimeter instruments are expected to spectrally resolve the intrinsic line shapes of the strongest fluorescent lines. X-ray models should therefore incorporate these intrinsic line profiles to obtain meaningful constraints from observational data. We included the intrinsic line profiles of the strongest fluorescent lines in the X-ray radiative transfer code SKIRT to model the cold-gas structure and kinematics based on high-resolution line observations from XRISM/Resolve and Athena /X-IFU. The intrinsic line profiles of the $ K and $ K lines of Cr, Mn, Fe, Co, Ni, and Cu were implemented based on a multi-Lorentzian parameterisation. Line energies are sampled from these Lorentzian components during the radiative transfer routine. In the optically thin regime, the SKIRT results match the intrinsic line profiles as measured in the laboratory. With a more complex 3D model that also includes kinematics, we find that the intrinsic line profiles are broadened and shifted to an extent that will be detectable with XRISM/Resolve; this model also demonstrates the importance of the intrinsic line shapes for constraining kinematics. We find that observed line profiles directly trace the cold-gas kinematics, without any additional radiative transfer effects. With the advent of the first XRISM/Resolve data, this update to the X-ray radiative transfer framework of SKIRT is timely and provides a unique tool for constraining the velocity structure of cold gas from X-ray microcalorimeter spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.