Abstract

The structure of intrinsic ledges at interphase boundaries has been interpreted with extended O-lattice/DSC-lattice approaches. The distribution of structural ledges can be predicted if the spacing difference between parallel matrix and product planes is treated as a measure of the relaxed coincidence condition. A small rotation away from the low-index planar parallelism introduces a series of interfacial dislocations that cancels the spacing difference, resulting in a lattice invariant line. Misfit-compensating ledges at bcc: hcp interfaces are produced as a ledged interface intersects additional O-points that are recognized with the incorporation of previously omitted bcc atom positions into the O-lattice construction. Energetic consideration suggests that structural interfacial energy may decrease when a flat interface becomes ledged with misfit-compensating ledges. Burgers vectors associated with structural ledges and misfit-compensating ledges are displacement shift complete (DSC) lattice vectors. Precipitate and martensite crystallography may both include a lattice invariant line, but they are involved in different interphase boundary characteristics. Assumptions and implications in precipitate and martensite crystallography are discussed in the framework of the O-lattice theory and phenomenological theory of martensite crystallography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.