Abstract

Sharp bends can be widely observed in isolated cellulose nanofibrils (CNFs) after mechanical treatment, referred to as kink dislocations that are previously found in wood cell walls under compression. The non-Gaussian distribution of kink angle implies some inherent deformation behaviors of cellulose nanocrystals (CNCs) hidden in the formation of kink dislocations in CNFs. We herein perform molecular dynamics simulations to investigate the kink deformation of nanocellulose. It is interesting to find an intrinsic deformation mode of Iβ CNCs under uniaxial compression, in which the metastable structure of kinked CNCs turns out to be the triclinic Iα phase with twin boundaries originated from interlayer dislocation-induced allomorphic transition. An intrinsic kink angle (~60°) is defined based on geometric traits of stable kinked CNCs. Moreover, the weakened intrachain hydrogen bonds in twin boundaries lead to exposed glycosidic bonds and damaged hydrogen-bonding networks, which would act as the origin of kink defects in nanocellulose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.