Abstract

As photoautotrophic microorganisms, microalgae feature complex mechanisms of photosynthesis and light energy transfer and as such studying their intrinsic growth kinetics is fairly difficult. In this article, the quantum yield of photochemical reaction was introduced in a study of microalgal kinetics to establish an intrinsic kinetic model of photoautotrophic microalgal growth. The blue-green algae Synechococcus sp. PCC7942 was used to verify the kinetic model developed using chlorophyll fluorescence analysis and growth kinetics determination. Results indicate that the kinetic model can realistically reflect the light energy utilization efficiency of microalgae as well as their intrinsic growth kinetic characteristics. The model and method proposed in this article may be utilized in intrinsic kinetics studies of photoautotrophic microorganisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.