Abstract

Ionomers are gaining much attention in the fields of soft robots, flexible electronics, and artificial intelligence. However, intrinsic dynamics modulation of ionomer molecules to achieve desirable properties is highly required and challenging due to a lack of understanding of the interactions between polymerics and ionic species. In this study, a novel ionic confinement engineering approach was employed, in which the composition of a copolymer, namely, PTAE-Fe, was adjusted to facilitate dynamic ionic crosslinking, which enables high stretchability (>10000 % elongation). The proportion of ionic functional groups in PTAE-Fe significantly enhanced the self-healing efficiency up to 95 %. The ionic confinement strategy also promotes electron momentum locking, resulting in a low dielectric-k property (Dk < 2.5), while a reduction in the heat release rate of 69.1 % makes the ionomer an excellent flame retardant material. In addition, a eutectic gallium-indium (EGaIn)-infused stretchable device and low Dk flexible ink were designed according to the ionic confinement strategy. The as-fabricated ionomer is expected to benefit a wide range of energy and storage technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call