Abstract

Hybrid lead halide perovskite materials are used in solar cells and show efficiencies greater than 23%. Furthermore, they are applied in light-emitting diodes, X-ray detectors, thin-film transistors, thermoelectrics, and memory devices. Lead trihalide hybrid materials contain methylammonium (MA) or formamidinium (FA) (or a mixture), or long alkylammonium halides, as alternative organic cations. However, the intrinsic stability of hybrid lead halide perovskites is not very high, and they are chemically unstable when exposed to moisture, light, or heat because of their organic contents and low formation energies. Therefore, although improvements in the chemical stability are crucial, changing the material composition is challenging because it is directly related to the desired application requirements. Fortunately, hybrid lead halide perovskites have a very high tolerance toward changes in physical properties arising from doping or addition of different cations and anions, in many cases showing improved properties. Here, the intrinsic instability of hybrid lead halide perovskites is reviewed in relation to the crystal phase and chemical stability. It is suggested that FA should be used for lead halide perovskites for chemical stability instead of MA. Furthermore, additives that stabilize the crystal phase with α-FAPbI3 should eschew MA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.