Abstract

Ion-sensitive field-effect transistors (ISFET) are fabricated using intrinsic hydrogen-terminated mono-crystalline diamond films. Transistor properties are realized by a surface conductive channel on hydrogen-terminated diamond. The gating is realized by immersing the diamond surface into electrolyte solution which is contacted by a platinum electrode. Hydrogen termination of diamond surface acts as a gate insulation without any additional oxide layer. The response of gate potential to pH is about − 56 mV/pH. The results are discussed in terms of transfer doping mechanism, Nernst equation, and electrochemical properties of diamond surfaces. They are also compared with ISFETs which employ ion-sensitive gate oxides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.