Abstract
The direct measurement of flexoelectric coefficients in epitaxial thin films is an unresolved problem, due to the clamping effect of substrates which induces a net strain (and hence parasitic piezoelectricity) in addition to strain gradients and flexoelectricity. Herein, we propose and demonstrate the use of van der Waals epitaxy as a successful strategy for measuring the intrinsic (clamping-free = flexoelectric coefficients of epitaxial thin films. We have made, measured, and compared ${\mathrm{BaTiO}}_{3}$ and ${\mathrm{SrTiO}}_{3}$ thin film capacitor heterostructures grown both by conventional oxide-on-oxide epitaxy and by van der Waals oxide-on-mica epitaxy, and found that, whereas the former is dominated by parasitic piezoelectricity, the response of the latter is truly flexoelectric. The results are backed by theoretical calculations of the film-substrate mechanical interaction, as well as by direct measurements that confirm the strain-free state of the films. van der Waals epitaxy thus emerges as powerful new tool in the study of flexoelectricity and, in particular, they finally allow exploring flexoelectric phenomena at the nanoscale (where strain gradients are highest) with direct experimental knowledge of the actual flexoelectric coefficients of thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.