Abstract

This paper presents an efficient intrinsic finite element approach for modeling and analyzing the forced dynamic response of helical springs. The finite element treatment employs intrinsic curvature (and strain) interpolation vice rotation (and displacement) interpolation, and thus can accurately and efficiently represent initially curved and twisted beams with a sparse number of elements. The governing equations of motion contain nonlinearities necessary for large curvatures. In addition, a constitutive model is developed which captures coupling due to non-zero initial curvature and strain. The method is employed to efficiently study dynamically-loaded helical springs. Convergence studies demonstrate that a sparse number of elements accurately capture spring dynamic response, with more elements required to resolve higher frequency content, as expected. Presented results also document rich, amplitude-dependent frequency response. In particular, moderate amplitude response leads to the presence of secondary resonances not captured by linearized models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call