Abstract
This paper reports an in-depth study on nanocrystalline Gd-doped ZnO thin films synthesized using versatile pulsed spray pyrolysis method and exhibit room temperature ferromagnetism. The detailed structural and microstructural studies confirm that the doped Gd ions occupy Zn sites and the peak shift can be elucidated by charge neutrality. Optical investigation shows that the Gd doping in ZnO lattice leads to a decrease in the near band edge position due to the introduction of new unoccupied states by Gd 4f electrons. The electronic structure of the Zn1−xGdxO at the O K edge shows the evolution of pre-edge spectral features similar to cuprates and manganites, and also confirms the strong hybridization of O 2p–Gd 4f/5d states. Furthermore, the Gd M5 edge provides evidence that Gd ions are in the trivalent state. Hysteresis measurements demonstrate that the Gd-doped ZnO films are magnetically anisotropic and exhibit intrinsic ferromagnetic behavior at room temperature. Higher magnetization in 3 kOe values is observed for a field applied perpendicular to the sample surface compared to the in-plane direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.