Abstract

Phosphorene and phosphorene analogues such as SnS and SnSe monolayers are promising nanoelectronic materials with desired bandgap, high carrier mobility, and anisotropic structures. Here, we show first-principles calculation evidence that these monolayers are potentially the long-sought two-dimensional (2D) materials that can combine electronic transistor characteristic with nonvolatile memory readable/writeable capability at ambient condition. Specifically, phosphorene is predicted to be a 2D intrinsic ferroelastic material with ultrahigh reversible strain, whereas SnS, SnSe, GeS, and GeSe monolayers are multiferroic with coupled ferroelectricity and ferroelasticity. Moreover, their low-switching barriers render room-temperature nonvolatile memory accessible, and their notable structural anisotropy enables ferroelastic or ferroelectric switching readily readable via electrical, thermal, optical, mechanical, or even spintronic detection upon the swapping of the zigzag and armchair direction. In addition, it is predicted that the GeS and GeSe monolayers as well as bulk SnS and SnSe can maintain their ferroelasticity and ferroelectricity (anti-ferroelectricity) beyond the room temperature, suggesting high potential for practical device application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.