Abstract

Using accurate first-principles calculations based on many-body perturbation theory we predict that two-dimensional MoS$_2$ hosts edge excitons with universal character, intrinsic to the existence of edges and lying well below the onset of bulk features. These excitons are largely insensitive to edge terminations or orientation, persisting even in the presence of metallic screening at zigzag edges, with large binding energies of $\sim$0.4 eV. Additional excitons can also emerge in ultranarrow ribbons, or as a function of the chemical nature of the termination. The chemical, structural, and electronic similarities with Se- or W-based transition-metal dichalcogenides suggest that these optical features could be common in this class of materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.