Abstract

Herein, novel intrinsic dual-emitting carbon dots (CDs) are prepared through a one-step hydrothermal treatment of glucose and 3-nitroaniline in sulfuric acid solution and utilized for ratiometric determination of Cu2+ and aspartic acid (Asp). The CDs exhibited an interesting pH-switchable emission behavior displaying an intrinsic dual-emitting peak with emission maxima at 400 and 610 nm at pH 4.0–5.0. The presence of Cu2+ intensively quenched the first emission peak at 400 nm, but it had a negligible effect on the second emission peak. The ratiometric signal displayed a high selectively for Cu2+ over other metal ions and provided a linear response over the concentration range of 0.01–1.00 μM with a detection limit of 7.0 nM. Moreover, at pH 4.0, Asp was able to restore the quenched fluorescence of the CDs-Cu2+ system with a much more successful performance than other amino acids. This on-off-on fluorescence behavior provided a selective ratiometric fluorescence method for the determination of Asp in the concentration range of 0.2–15 μM. The acceptable detection results for Cu2+ in a river water sample (compared to Inductively Coupled Plasma (ICP) method) and for Asp in human serum samples confirmed the potential application of this ratiometric nanoprobe for sensing in real samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.