Abstract
The cloning of the cDNA for the mdr1 gene, whose expression is associated with the development of multidrug-resistance in cultured cells, has made it possible to explore the mechanism of multidrug resistance in human tumors. We have found that normal human kidney, six of eight adenocarcinomas of the kidney, and four cell lines derived from kidney adenocarcinomas express high levels of mdr1 mRNA. Two criteria suggest that primary multidrug resistance in human adenocarcinomas of the kidney results, at least in part, from expression of the mdr1 gene: (1) mdr1 mRNA levels are elevated in four unselected kidney adenocarcinoma cell lines that show a multidrug-resistant phenotype; and (2) multidrug resistance in these kidney cancer cell lines is reversed by verapamil and quinidine, agents known to reverse mdr1-associated drug resistance in cell lines selected for multidrug resistance in vitro. These results suggest that appropriate pharmacological intervention to reverse multidrug resistance might make adenocarcinomas of the kidney more sensitive to chemotherapy with agents such as Adriamycin (Adria Laboratories, Columbus, OH) and the vinca alkaloids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of clinical oncology : official journal of the American Society of Clinical Oncology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.