Abstract

Intrinsic dimensionality (ID) provides an objective metric with which to quantify the number of detectable signal components in a spectroscopic image. Here, we use ID to illustrate the information gained by fusing spectroscopic data acquired over different wavelength ranges. For Cuprite, a mineral-rich site in the Nevada desert, the signal content from visible to short-wave infrared (VSWIR) describes almost entirely different signal content from the thermal infrared (TIR). Due to the extremely limited number of coincident VSWIR and TIR acquisitions previously acquired, this article provides a unique opportunity to quantify the information content gained by adding TIR acquisitions to the more commonly acquired VSWIR data. We highlight the importance of combined VSWIR/TIR imaging for the complete characterization and mapping of mineral and other sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.