Abstract

Complex networks are powerful mathematical tools for modelling and understanding the behaviour of highly interconnected systems. However, existing methods for analyzing these networks focus on local properties (e.g. degree distribution, clustering coefficient) or global properties (e.g. diameter, modularity) and fail to characterize the network structure across multiple scales. In this paper, we introduce a rigorous method for calculating the intrinsic dimension of unweighted networks. The intrinsic dimension is a feature that describes the network structure at all scales, from local to global. We propose using this measure as a summary statistic within an Approximate Bayesian Computation framework to infer the parameters of flexible and multi-purpose mechanistic models that generate complex networks. Furthermore, we present a new mechanistic model that can reproduce the intrinsic dimension of networks with large diameters, a task that has been challenging for existing models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.