Abstract
We evaluate experimentally the intrinsic detection efficiency (IDE) of superconducting NbN nanowire single-photon detectors in the range of wire thicknesses from 4 to 12 nm. The study is performed in the broad spectral interval between near-ultraviolet (wavelength 400 nm) and near-infrared (wavelength 2000 nm) light with plane waves at normal incidence. For visible light the IDE of the thinnest detectors reaches 70%. We use numerically computed absorptance of the nanowire-structures for the analysis of the experimental data. Variations in the detection efficiency with both the wire thickness and the wavelength evidence the red boundary of the hot-spot photon-detection mechanism. We explain the detection at larger wavelengths invoking thermal excitation of magnetic Pearl vortices over the potential barrier at the edges of the wire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.