Abstract

High temperature Hall effect and resistivity measurements have been made on undoped, high purity semi-insulating (HPSI) 4H SiC samples. Both physical vapor transport and high temperature chemical vapor deposition grown samples have been investigated. Resistivity measurements before and after annealing at temperatures up to 1800°C are also reported. Hall and resistivity results are compared with low temperature photoluminescence results. The thermal activation energies for HPSI material taken from temperature dependent resistivity measurements varied from 0.9 to 1.5 eV. Hall effect measurements were made on several HPSI. In all cases the material was found to be n-type and the measured carrier concentration activation energies agreed within a few tens of percent with the resistivity activation energies. Mixed conduction analysis of the data suggests that the hole concentration was negligible in all of the samples studied. This suggests that the defects responsible for the semi-insulating properties have deep levels located in the upper half of the bandgap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.