Abstract

The quantum decoherence is an ineluctable process when a quantum system interacts with its surrounding environment. Milburn’s dynamical master equation, as a modified shape of the Schrödinger equation, is typically used to study the effects decoherence even without intervention of environment. We studied the temporal evolution of non-local correlations in a dipolar-coupled spin system under the influence of intrinsic decoherence. Primarily, the generation in correlations of Einstein–Podolsky–Rosen steering, measurement-induced non-locality and entanglement in an uncorrelated initial system state were studied. Also, the effect of the intrinsic decoherence on the quality of the dense coding capacity dynamics for the dipolar-coupled spin system was examined. Our results highlight that the initial system’s role in defining the quantum correlations’ robustness, and we also brought out the impacts of system’s parameters on the non-local correlations and the efficiency of dense coding process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call