Abstract

1. The magnocellular hypothalamoneurohypophysial system, consisting chiefly of the supraoptic and paraventricular nuclei and their axonal projections to the pituitary neural lobe, has become a model for the study of neuroendocrine cell morphology, function, and plasticity. 2. Decades of research have produced a wealth of knowledge about the physiological conditions that activate this system, the peripheral target tissues affected by its outputs, and its capacity to undergo use-dependent, reversible reorganization. 3. Earlier research on the neural control of this system concentrated largely on the synaptic inputs that influence the activity of these magnocellular neurons and, while that task is still far from completed, methods have now been developed that permit insights to be gained into the control exercised by intrinsic cellular and molecular mechanisms. 4. This article reviews the current state of knowledge of roles played by these intrinsic mechanisms, including influences of intracellular calcium buffering, calcium release from internal stores and intercellular communication through gap junctions, in the control of neuroendocrine cell activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.