Abstract

A series of MP2 and CCSD(T) computations have been carried out with correlation consistent basis sets as large as aug-cc-pV5Z to determine the intrinsic equatorial-axial conformational preference of CH(3)-, F-, OCH(3)-, and OH-substituted cyclohexane and tetrahydropyran rings. The high-accuracy relative electronic energies reported here shed new light on the intrinsic energetics of these cyclic prototypes for the anomeric effect. At the CCSD(T) complete basis set (CBS) limit, the energy of the equatorial conformation relative to the axial position (DeltaE (CBS)(CCSD(T))) is -1.75, -0.20, -0.21, and -0.56 kcal mol(-1) in methyl-, fluoro-, methoxy-, and hydroxycyclohexane, respectively, while DeltaE(CBS)(CCSD(T) is -2.83, +2.45, +1.27, and +0.86 kcal mol(-1) for 2-methyl-, 2-fluoro-, 2-methoxy-, and 2-hydroxytetrahydropyran, respectively. Note that the equatorial and axial conformers are nearly electronically isoenergetic in both fluoro- and methoxycyclohexane. For all eight cyclic species, a zero-point vibrational energy correction decreases Delta by a few tenths of a kilocalorie per mole. Relative energies obtained with popular methods and basis sets are unreliable, including Hartree-Fock theory, the B3LYP density functional, and the 6-31G and 6-311G families of split-valence basis sets. Even with the massive pentuple-zeta basis sets, the HF and B3LYP methods substantially overestimate the stability of the equatorial conformers (by as much as 0.99 and 0.73 kcal mol(-1), respectively, for 2-methoxytetrahydropyran). Only because of a consistent cancellation of errors do these popular approaches sometimes provide reasonable estimates of the anomeric effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.