Abstract

The primary discharge product in sodium–air batteries has been reported in some experiments to be sodium peroxide, Na2O2, while in others sodium superoxide, NaO2, is observed. Importantly, cells that discharge to NaO2 exhibit low charging overpotentials, while those that discharge to Na2O2 do not. These differences could arise from a higher conductivity within the superoxide; however, this explanation remains speculative given that charge transport in superoxides is relatively unexplored. Here, density functional and quasi-particle GW methods are used to comparatively assess the conductivities of Na–O2 discharge phases by calculating the concentrations and mobilities of intrinsic charge carriers in Na2O2 and NaO2. Both compounds are predicted to be electrical insulators, with bandgaps in excess of 5 eV. In the case of sodium peroxide, the transport properties are similar to those reported previously for lithium peroxide, suggesting low bulk conductivity. Transport in the superoxide has some features in co...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.