Abstract

A series of incremental loading oedometer tests was conducted on pure clays and sand–clay mixtures with various sand/clay ratios and clay mineral compositions. The void indexes Ivand IvHwere introduced to evaluate their intrinsic compressibility. Test results revealed that Ivwas more suitable for depicting the compression behavior of pure clays than IvH; whereas, for the compressibility of sand–clay mixtures, the normalized compression line by using Ivwas obviously different from that of pure clays and traditional soils due to the presence of sand particles. Therefore, a four-phase analysis framework of sand–clay mixtures was introduced to unify the intrinsic compression behavior of soils with and without sands. It was found that the updated clay void index Ivcparameter was effective to unify the soil’s compression behavior by excluding the influence of sand particles in clays before the sand skeleton formation. After the formation of the sand skeleton, the cluster particles change the stress distribution of mixtures, leading to less stress being applied on the clay matrix and thus the bifurcation of the intrinsic compression behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.