Abstract

The concept of generalized functions taking values in a differentiable manifold is extended to a functorial theory. We establish several characterization results which allow a global intrinsic formulation both of the theory of manifold-valued generalized functions and of generalized vector bundle homomorphisms. As a consequence, a characterization of equivalence that does not resort to derivatives (analogous to scalar-valued cases of Colombeau's construction) is achieved. These results are employed to derive a point value description of all types of generalized functions valued in manifolds and to show that composition can be carried out unrestrictedly. Finally, a new concept of association adapted to the present setting is introduced. 2000 Mathematics Subject Classification 46T30 (primary), 46F30, 53B20 (secondary).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.