Abstract

The thermal compensation at high temperatures for aluminum nitride (AlN) Lamb wave resonators utilizing the lowest symmetric (S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> ) mode is theoretically and experimentally demonstrated in this work. The turnover temperature can be designed at high temperatures by changing the normalized AlN film thickness (h <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">AlN</sub> /λ) and the normalized silicon oxide (SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) layer thickness (h <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SiO2</sub> /λ) in the AlN/SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> composite layer. The AlN Lamb wave resonators were well temperature-compensated at 214°C and 430°C, respectively, by using different ratios of h <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">AlN</sub> /λ to h <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SiO2</sub> /λ. Even though the intrinsic quality factor (Q) degrades and the intrinsic motional impedance (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> ) increases at high temperatures, a Lamb wave resonator shows a Q of 760 at its turnover temperature, 430°C. These results demonstrate that thermally stable AlN Lamb wave resonators have the great potential for harsh environment applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call