Abstract
Type 1 and type 2 cytokines are primary mediators in contact allergy and aeroallergen-mediated disorders, respectively. For both types of disease, dendritic cells (DCs) are pivotal in initiating immune hyperresponsiveness. We studied whether contact and respiratory allergens possess intrinsic capacities to polarize DC towards DC1 and DC2 functions, independent of environmental factors. Human monocyte-derived DCs were exposed to the positive controls [type 1: lipopolysaccharide (LPS) + interferon-gamma; type 2: LPS + prostaglandin E(2)], contact allergens [2,4-dinitrochlorobenzene (DNCB), oxazolone (OXA), and nickel sulfate (NiSO(4))], and respiratory allergens [trimellitic anhydride (TMA) and the protein allergen derived from Dermatophagoides pteronyssinus (Der p1)]. The polarizing potentials of the allergens on DCs were determined by the secretion of type 1 [tumour necrosis factor-alpha (TNF-alpha), CXCL10, and interleukin (IL)-12p70] and type 2 (IL-10) cytokines. The contact allergens, DNCB and OXA, induced strict type 1 DC polarization, whereas the respiratory allergens, TMA and Der p1, showed strict type 2 DC polarization. The contact allergen, NiSO(4), induced both DC1 (TNF-alpha and CXCL10 production) and DC2 (decreased IL-12p70/IL-10 ratio) features. These results support the view that allergens have an intrinsic capacity to skew immune responses at the DC level, irrespective of local factors such as those determined by cutaneous or mucosal epithelial microenvironments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.