Abstract

This work reveals the intrinsic carrier transport behavior of 2D organolead halide perovskites based on phase-pure homologous (n = 1, 2, and 3) Ruddelsden-Popper perovskite (RPP) (BA)2 (MA)n -1 Pbn I3n+1 single crystals. The 2D perovskite field effect transistors with high-quality exfoliated 2D perovskite bulk crystals are fabricated, and characteristic output and transfer curves are measured from individual single-crystal flakes with various n values under different temperatures. Unipolar n-type transport dominated the electrical properties of all these 2D RPP single crystals. The transport behavior of the 2D organolead halide hybrid perovskites exhibits a strong dependence on the n value and the mobility substantially increases as the ratio of the number of inorganic perovskite slabs per organic spacer increases. By extracting the effect of contact resistances, the corrected mobility values for n = 1, 2, and 3 are 2 × 10-3 , 8.3 × 10-2 , and 1.25 cm2 V-1 s-1 at 77 K, respectively. Furthermore, by combining temperature-dependent electrical transport and optical measurements, it is found that the origin of the carrier mobility dependence on the phase transition for 2D organolead halide perovskites is very different from that of their 3D counterparts. Our findings offer insight into fundamental carrier transport behavior of 2D organic-inorganic hybrid perovskites based on phase-pure homologous single crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.