Abstract

While examples of variation and diversity exist throughout the nervous system, their importance remains a source of debate. Even neurons of the same molecular type show notable intrinsic differences. Largely unknown however is the degree to which these differences impair or assist neural coding. When outputs from a single type of neuron were examined - the mitral cells of the mouse olfactory bulb - to identical stimuli, we found that each cell's spiking response was dictated by its unique biophysical fingerprint. By exploiting this intrinsic heterogeneity, diverse populations coded for 2-fold more information than their homogeneous counterparts. Additionally, biophysical variability alone reduced pairwise output spike correlations to low levels. Our results demonstrate that intrinsic neuronal diversity serves an important role in neural coding and is not simply the result of biological imprecision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.