Abstract

The gut microbiome performs many crucial functions for the human host, but the molecular mechanisms by which host, microbe and diet interact to mediate health and disease are only starting to be revealed. Here we review the literature on how changes in the diet affect the microbiome. A number of studies have shown that within a geographic region, different diets (such as vegan vs. omnivore) are associated with differences in a modest number of taxa but do not reliably produce radical differences within the gut microbial community. In contrast, studies that look across continents consistently find profoundly different microbial communities between Westernized and traditional populations, although it remains unclear to what extent diet or other differences in lifestyle drive these distinct microbial community structures. Furthermore, studies that place subjects on controlled short term experimental diets have found the resulting alterations to the gut microbial community to generally be small in scope, with changes that do not overcome initial individual differences in microbial community structure. These results emphasize that the human gut microbial community is relatively stable over time. In contrast, short term changes in diet can cause large changes in metabolite profiles, including metabolites processed by the gut microbial community. These results suggest that commensal gut microbes have a great deal of genetic plasticity and can activate different metabolic pathways independent of changes to microbial community composition. Thus, future studies of the how diet impacts host health via the microbiome may wish to focus on functional assays such as transcriptomics and metabolomics, in addition to 16S rRNA and whole-genome metagenome shotgun analyses of DNA. Taken together, the literature is most consistent with a model in which the composition of the adult gut microbial community undergoes modest compositional changes in response to altered diet but can nonetheless respond very rapidly to dietary changes via up- or down-regulation of metabolic pathways that can have profound and immediate consequences for host health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call