Abstract

We have studied the intrinsic contribution to anomalous Hall conductivity in presence of the normal magnetic field. A semiclassical approach for calculating the Hall conductivity in presence of the nontrivial Berry phase is used. This method is based on the semiclassical equations of motion with anomalous velocity correction and the Boltzmann transport equation. We present the formulation of anomalous Hall conductivity in this approach. We perform explicit calculations for a two-dimensional system which is described by Dirac Hamiltonian. At zero magnetic field, our results coincide with previous results which are obtained both using the semiclassical method and Kubo formalism. For the strong magnetic field, Hall conductivity decreases as a power-law. The exponent of the power-law behavior for the infinite energy band is 1/3 and for the finite energy band, there is a crossover from 1/3 to1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.