Abstract

We present intrinsic- and scattering-Q attenuation images for Usu volcano (Japan) by analyzing over 1800 vertical seismograms. By fitting the observed envelopes to the diffusion model, we obtained intrinsic and scattering attenuation values at three different frequency bands. Using a back-projection method and assuming a Gaussian-type weighting function, we obtained the 2D images of intrinsic and scattering attenuation. Resolution tests confirm the robustness and reliability of the obtained images. We found that scattering attenuation is the dominant process of energy loss in the frequency range analyzed, which suggests strong spatial heterogeneity. The resultant scattering attenuation images show an increase of attenuation toward the southwest from Toya caldera, which may correspond to deepening of the basement. We also identify an area of low intrinsic and scattering attenuation at the summit of Usu volcano which could be associated with old magma intrusions. Our results demonstrate a strong spatial relation between structural heterogeneities and attenuation processes in volcanic areas and confirm the efficiency of the method which can be used together with conventional imaging techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.