Abstract

Compounds with ordered and interconnected channels have versatile multifunctional applications in technological fields. In this work, we report the intrinsic- and Eu3+-activated luminescence in NbAlO4 with a wide channel structure. NbAlO4 is an n-type semiconductor with an indirect allowed transition and a band-gap energy of 3.26 eV. The conduction band and valence band are composed of Nb 3d and O 2p states, respectively. Unlike the common niobate oxide Nb2O5, NbAlO4 exhibits efficient self-activated luminescence with good thermal stability even at room temperature. The AlO4 tetrahedron effectively blocks the transfer/dispersion of excitation energy between NbO6 chains in NbAlO4, allowing for effective self-activated luminescence from NbO6 activation centers. Moreover, Eu3+-doped NbAlO4 displayed a bright red luminescence of 5D0 → 7F2 transition at 610 nm. The site-selective excitation and luminescence of Eu3+ ions in a spectroscopic probe were utilized to investigate the doping mechanism. It is evidenced that Eu3+ is doped in the structure channel in NbAlO4 lattices, not in the normal cation sites of Nb5+ or Al3+. The experimental findings are valuable in developing new luminescent materials and improving the understanding of the material's channel structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call