Abstract
The most efficient architecture for achieving high donor/acceptor interfacial area in organic photovoltaics (OPVs) would employ arrays of vertically interdigitated p- and n- type semiconductor nanopillars (NPs). Such morphology could have an advantage in bulk heterojunction systems; however, precise control of the dimension morphology in a crystalline, interpenetrating architecture has not yet been realized. Here we present a simple, yet facile, crystallization technique for the growth of vertically oriented NPs utilizing a modified thermal evaporation technique that hinges on a fast deposition rate, short substrate-source distance, and ballistic mass transport. A broad range of organic semiconductor materials is beneficial from the technique to generate NP geometries. Moreover, this technique can also be generalized to various substrates, namely, graphene, PEDOT-PSS, ZnO, CuI, MoO3, and MoS2. The advantage of the NP architecture over the conventional thin film counterpart is demonstrated with an increase of power conversion efficiency of 32% in photovoltaics. This technique will advance the knowledge of organic semiconductor crystallization and create opportunities for the fabrication and processing of NPs for applications that include solar cells, charge storage devices, sensors, and vertical transistors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.