Abstract

In the vertebrate heart the intracardiac nervous system is the final common pathway for autonomic control of cardiac output, but the neuroanatomy of this system is not well understood. In this study we investigated the innervation of the heart in a model vertebrate, the zebrafish. We used antibodies against acetylated tubulin, human neuronal protein C/D, choline acetyltransferase, tyrosine hydroxylase, neuronal nitric oxide synthase, and vasoactive intestinal polypeptide to visualize neural elements and their neurotransmitter content. Most neurons were located at the venous pole in a plexus around the sinoatrial valve; mean total number of cells was 197 ± 23, and 92% were choline acetyltransferase positive, implying a cholinergic role. The plexus contained cholinergic, adrenergic, and nitrergic axons and vasoactive intestinal polypeptide-positive terminals, some innervating somata. Putative pacemaker cells near the plexus showed immunoreactivity for hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) and the transcription factor Islet-1 (Isl1). The neurotracer neurobiotin showed that extrinsic axons from the left and right vagosympathetic trunks innervated the sinoatrial plexus proximal to their entry into the heart; some extrinsic axons from each trunk also projected into the medial dorsal plexus region. Extrinsic axons also innervated the atrial and ventricular walls. An extracardiac nerve trunk innervated the bulbus arteriosus and entered the arterial pole of the heart to innervate the proximal ventricle. We have shown that the intracardiac nervous system in the zebrafish is anatomically and neurochemically complex, providing a substrate for autonomic control of cardiac effectors in all chambers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call