Abstract
The temperature dependence of charge carrier mobility in conjugated polymers and their blends with fullerenes is investigated with different electrical methods, through field effect transistor (FET), space charge limited current (SCLC) and charge extraction (CELIV) measurements. Simple models, such as the Gaussian disorder model (GDM), are shown to accurately predict the temperature behavior, and a good correlation between the different measurement methods is obtained. Inconsistent charge carrier concentrations in the modeling are explained through intrinsic non-equilibrium effects, and are responsible for the limited applicability of existing numerical models. A severe extrinsic influence from water in FETs with a hydrophilic insulator interface is also demonstrated. The presence of water leads to a significant overestimate of the disorder in the materials from measurements close to room temperature and erratic behavior in the 150–350 K range. To circumvent this problem it is shown to be necessary to measure under ultra high vacuum (UHV) conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.